A Three Parameter Invariant of Oriented Links
نویسندگان
چکیده
This paper defines a new sequence of finite dimensional algebras as quotients of the group algebras of the braid groups. This sequence depends on three homogeneous parameters and has a one-parameter family of Markov traces, and so gives a three parameter invariant of oriented links.
منابع مشابه
6 v 1 6 J an 1 99 4 THE UNIVERSAL VASSILIEV - KONTSEVICH INVARIANT FOR FRAMED ORIENTED LINKS
We give a generalization of the Reshetikhin-Turaev functor for tangles to get a combinatorial formula for the Kontsevich integral for framed oriented links. The uniqueness of the universal Vassiliev-Kontsevich invariant of framed oriented links is established. As a corollary one gets the rationality of Kontsevich integral.
متن کاملRobust gain-scheduled control of linear parameter-varying systems with uncertain scheduling parameters in the presence of the time-invariant uncertainties
In this paper, a new approach is presented to design a gain-scheduled state-feedback controller for uncertain linear parameter-varying systems. It is supposed that the state-space matrices of them are the linear combination of the uncertain scheduling parameters. It is assumed that the existed uncertainties are of type of time-invariant parametric uncertainties with specified intervals. Simulta...
متن کاملA topological invariant to predict the three-dimensional writhe of ideal configurations of knots and links.
We present herein a topological invariant of oriented alternating knots and links that predicts the three-dimensional (3D) writhe of the ideal geometrical configuration of the considered knot/link. The fact that we can correlate a geometrical property of a given configuration with a topological invariant supports the notion that the ideal configuration contains important information about knots...
متن کاملTruncated Linear Minimax Estimator of a Power of the Scale Parameter in a Lower- Bounded Parameter Space
Minimax estimation problems with restricted parameter space reached increasing interest within the last two decades Some authors derived minimax and admissible estimators of bounded parameters under squared error loss and scale invariant squared error loss In some truncated estimation problems the most natural estimator to be considered is the truncated version of a classic...
متن کاملBi-oriented Quantum Algebras, and a Generalized Alexander Polynomial for Virtual Links
This paper discusses the construction of a generalized Alexander polynomial for virtual knots and links, and the reformulation of this invariant as a quantum link invariant. We then introduce the concept of a bi-oriented quantum algebra which provides an algebraic context for this structure.
متن کامل